press esc to navigate slides
stat 215 final project
what features are reliable/useful/predictive?
make fork private + include your teammates
python is better
indentation matters!
python | R |
---|---|
a=5 |
a <- 5 |
pip install packagename |
install.packages(packagename) |
import packagename |
library(packagename) |
listname[0] |
listname[1] |
python --version
should give 3.6 or higher (might need to type python3
)
easier if you install things by making a venv
python3 -m venv rule-env // create the env
source rule-env/bin/activate // activate the env
git clone https://github.com/Yu-Group/rule-vetting // clone the repo
cd rule-vetting
pip install -e .
you can use any editor, maybe jupyterlab or pycharm
pandas, numpy, sklearn, seaborn/matplotlib
sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=df,
col_wrap=2, ci=None, palette="muted", height=4,
scatter_kws={"s": 50, "alpha": 1})
from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
clf.predict([[2., 2.]])
from imodels import RuleFitClassifier
model = RuleFitClassifier()
model.fit(X_train, y_train)
preds = model.predict(X_test)
preds_proba = model.predict_proba(X_test)
print(model)
package for facilitating PCS analysis, especially stability
pytest --project <your_project_name>
e.g. pytest --project iai_pecarn