press esc to navigate slides
stat 215 final project
what features are reliable/useful/predictive?

make fork private + include your teammates

python is better
indentation matters!
| python | R | 
|---|---|
| a=5 | a <- 5 | 
| pip install packagename | install.packages(packagename) | 
| import packagename | library(packagename) | 
| listname[0] | listname[1] | 
python --version should give 3.6 or higher (might need to type python3)
easier if you install things by making a venv
python3 -m venv rule-env  // create the env
source rule-env/bin/activate  // activate the env
git clone https://github.com/Yu-Group/rule-vetting  // clone the repo
cd rule-vetting
pip install -e .
you can use any editor, maybe jupyterlab or pycharm

pandas, numpy, sklearn, seaborn/matplotlib


sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=df,
           col_wrap=2, ci=None, palette="muted", height=4,
           scatter_kws={"s": 50, "alpha": 1})


from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
clf.predict([[2., 2.]])

from imodels import RuleFitClassifier
model = RuleFitClassifier()
model.fit(X_train, y_train)
preds = model.predict(X_test)
preds_proba = model.predict_proba(X_test)
print(model)
package for facilitating PCS analysis, especially stability



pytest --project <your_project_name>
e.g. pytest --project iai_pecarn